TensorBoard必知必会的入门了解
来源|https://blog.csdn.net/u010099080/article/details/77426577
python进阶教程
机器学习
深度学习
长按二维码关注
TensorBoard 是如何工作的?
简单来说,TensorBoard 是通过一些操作(summary operations)将数据记录到文件(event files)中,然后再读取文件来完成作图的。想要在浏览器上看到 TensorBoard 页面,大概需要这几步:
summary。在定义计算图的时候,在适当的位置加上一些 summary 操作 。
merge。你很可能加了很多 summary 操作,我们需要使用 tf.summary.merge_all 来将这些 summary 操作聚合成一个操作,由它来产生所有 summary 数据。
run。在没有运行的时候这些操作是不会执行任何东西的,仅仅是定义了一下而已。在运行(开始训练)的时候,我们需要通过 tf.summary.FileWriter() 指定一个目录来告诉程序把产生的文件放到哪。然后在运行的时候使用 add_summary() 来将某一步的 summary 数据记录到文件中。
当训练完成后,在命令行使用 tensorboard --logdir=path/to/log-directory 来启动 TensorBoard,按照提示在浏览器打开页面,注意把 path/to/log-directory 替换成你上面指定的目录。
OVERVIEW
总体上,目前 TensorBoard 主要包括下面几个面板:
其中 TEXT 是 最新版(应该是 1.3)才加进去的,实验性功能,官方都没怎么介绍。除了 AUDIO(没用过)、EMBEDDINGS(还不是很熟) 和 TEXT(没用过) 这几个,这篇博客主要说剩下的几个,其他的等回头熟练了再来说,尽量避免误人子弟。
TensorBoard 的工作原理是读取模型训练时产生的 TensorFlow events 文件,这个文件包括了一些 summary 数据(就是作图时用的数据)。
SCALARS
TensorBoard 的默认打开样式
TensorBoard 打开时默认直接进入 SCALARS,并且默认使用 .* 正则表达式显示所有图(其他面板同理,下面就不再赘述),你用到的面板会在顶部导航栏直接显示,而其他用不到的(你代码中没有相关代码)则会收起到 INACTIVE 中。
SCALARS 面板主要用于记录诸如准确率、损失和学习率等单个值的变化趋势。在代码中用 tf.summary.scalar() 来将其记录到文件中。对应于我的代码中,我是使用其记录了训练准确率和损失。
训练准确率:
全部 run 的 acuracy
可以看到这些曲线并不是那么平滑,这是因为我记录的步数比较少,也就是点比较少,如果每一步都记录或者间隔比较短,那么最后的文件会很大。下同
损失:
全部 run 的 loss
每个图的右下角都有 3 个小图标,第一个是查看大图,第二个是是否对 y 轴对数化,第三个是如果你拖动或者缩放了坐标轴,再重新回到原始位置。
Fit domain to data
tf.summary.scalar(name, tensor) 有两个参数:
name:可以理解为图的标题。在 GRAPHS 中则是该节点的名字
tensor:包含单个值的 tensor,说白了就是作图的时候要用的数据
在上面的图中,可以看到除了 accuracy 和 loss 外,还有一个 eval_accuracy,这个是我用来记录验证准确率的,代码中相关的部分如下:
全部 run 的 eval_accuracy
这里我是手动添加了一个验证准确率到 SCALARS 中,其实想要记录验证准确率完全不必这么做,和训练准确率不同的只是 feed 的数据不一样而已。然而由于我的显存不够一次装下整个验证集,所以我就分了两部分计算然后求平均值来得到整个验证集的准确率。
当我们有很多的 tag (图)的时候,我们可以在左上角写正则表达式来选择其中一些 tag,比如我想选择包括 accuracy 的 tag,那么我直接写上 accuracy 就可以了,右侧就会多出一个 accuracy 的 tag,显示匹配出的结果。
页面左上是 Show data download links 和 Ignore outliers in chart scaling,这两个比较好理解,第一个就是显示数据下载链接,可以把 TensorBoard 作图用的数据下载下来,点击后可以在图的右下角可以看到下载链接以及选择下载哪一个 run 的,下载格式支持 CSV 和 JSON。第二个是排除异常点,默认选中。
当我们用鼠标在图上滑过的时候可以显示出每个 run 对应的点的值,这个显示顺序是由 Tooltip sorting method 来控制的,有 default、descending(降序)、asceding (升序)和 nearest 四个选项,大家可以试试点几下。
而下面的 Smoothing 指的是作图时曲线的平滑程度,使用的是类似指数平滑的处理方法。如果不平滑处理的话,有些曲线波动很大,难以看出趋势。0 就是不平滑处理,1 就是最平滑,默认是 0.6。
Horizontal Axis 顾名思义指的是横轴的设置:
STEP:默认选项,指的是横轴显示的是训练迭代次数
RELATIVE:这个相对指的是相对时间,相对于训练开始的时间,也就是说是训练用时 ,单位是小时
WALL:指训练的绝对时间
最下面的 Runs 列出了各个 run,你可以选择只显示某一个或某几个。
IMAGES
如果你的模型输入是图像(的像素值),然后你想看看模型每次的输入图像是什么样的,以保证每次输入的图像没有问题(因为你可能在模型中对图像做了某种变换,而这种变换是很容易出问题的),IMAGES 面板就是干这个的,它可以显示出相应的输入图像,默认显示最新的输入图像,如下图:
第 45000 次迭代时输入的 3 个图像
图的右下角的两个图标,第一个是查看大图,第二个是查看原图(真实大小,默认显示的是放大后的)。左侧和 SCALARS 差不多,我就不赘述了。
而在代码中,需要在合适的位置使用 tf.summary.image() 来把图像记录到文件中,其参数和 tf.summary.scalar() 大致相同,多了一个 max_outputs ,指的是最多显示多少张图片,默认为 3。对应于我的代码,如下:
GRAPHS
这个应该是最常用的面板了。很多时候我们的模型很复杂,包含很多层,我们想要总体上看下构建的网络到底是什么样的,这时候就用到 GRAPHS 面板了,在这里可以展示出你所构建的网络整体结构,显示数据流的方向和大小,也可以显示训练时每个节点的用时、耗费的内存大小以及参数多少。默认显示的图分为两部分:主图(Main Graph)和辅助节点(Auxiliary Nodes)。其中主图显示的就是网络结构,辅助节点则显示的是初始化、训练、保存等节点。我们可以双击某个节点或者点击节点右上角的 + 来展开查看里面的情况,也可以对齐进行缩放,每个节点的命名都是我们在代码中使用 tf.name_scope() 定义好的。下面介绍下该面板左侧的功能。
计算图
左上是 Fit to screen,顾名思义就是将图缩放到适合屏幕。下面的 Download PNG 则是将图保存到本地。Run 和 Session Run 分别是不同的训练和迭代步数。比如我这里以不同的超参训练了 6 次,那么 就有 6 个 run,而你所记录的迭代次数(并不是每一步都会记录当前状态的,那样的话太多了,一般都是每隔多少次记录一次)则显示在 Session Run 里。再下面大家应该都能看懂,我就不详细说每个功能的意思了。
选择迭代步数
TensorBoard 默认是不会记录每个节点的用时、耗费的内存大小等这些信息的,那么如何才能在图上显示这些信息呢?关键就是如下这些代码,主要就是在 sess.run() 中加入 options 和 run_metadata 参数。
然后我们就可以选择 Compute time 或者 Memory 来查看相应信息,颜色深浅代表耗时多少或者内存耗用多少。
计算耗时
我们也可以将某个节点从主图移除,将其放到辅助节点中,以便于我们更清晰的观察整个网络。具体操作是 右键该节点,选择 Remove from main graph 。
DISTRIBUTIONS
DISTRIBUTIONS 主要用来展示网络中各参数随训练步数的增加的变化情况,可以说是 多分位数折线图 的堆叠。下面我就下面这张图来解释下。
权重分布
这张图表示的是第二个卷积层的权重变化。横轴表示训练步数,纵轴表示权重值。而从上到下的折现分别表示权重分布的不同分位数:[maximum, 93%, 84%, 69%, 50%, 31%, 16%, 7%, minimum]。对应于我的代码,部分如下:
HISTOGRAMS
HISTOGRAMS 和 DISTRIBUTIONS 是对同一数据不同方式的展现。与 DISTRIBUTIONS 不同的是,HISTOGRAMS 可以说是 频数分布直方图 的堆叠。
横轴表示权重值,纵轴表示训练步数。颜色越深表示时间越早,越浅表示时间越晚(越接近训练结束)。除此之外,HISTOGRAMS 还有个 Histogram mode,有两个选项:OVERLAY 和 OFFSET。选择 OVERLAY 时横轴为权重值,纵轴为频数,每一条折线为训练步数。颜色深浅与上面同理。默认为 OFFSET 模式。
推 荐 阅 读
CV从业者必读!2018最具突破性计算机视觉论文Top 10
包邮送书20本,满足你的需求
一文纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception
赶紧关注我们吧